Scale-balanced loss for object detection
نویسندگان
چکیده
• A matching imbalance in current object detection pipelines is pointed out. It can lead to poor performance of detecting objects with different scales. An innovative loss function called scale-balanced proposed alleviate the imbalance. Experiments demonstrate effectiveness loss, especially small improved significantly. Object an important field computer vision. Nevertheless, a research area that has so far not received much attention study into anchor strategy and anchor-based detection, particular detection. clear larger sizes tend match more anchors than smaller ones. This may result objects. be alleviated by paying fewer anchors. We propose flexible for which compatible popular methods. The method, does add any extra computational cost original pipelines. By re-weighting strategy, method significantly improves accuracy multi-scale Comprehensive experiments indicate achieved excellent generalization when separately applied some attained up 15% improvements on recall rates medium both PASCAL VOC MS COCO dataset. also beneficial AP improvement 1.5%.
منابع مشابه
Estimation of Scale Parameter in a Subfamily of Exponential Family with Weighted Balanced Loss Function
Suppose x1,x2, x3, ..., xn is a random sample of size n from a distribution with pdf...[To continue please click here]
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولGlobal-scale Object Detection Using Satellite Imagery
In recent years, there has been a substantial increase in the availability of high-resolution commercial satellite imagery, enabling a variety of new remote-sensing applications. One of the main challenges for these applications is the accurate and efficient extraction of semantic information from satellite imagery. In this work, we investigate an important instance of this class of challenges ...
متن کاملMulti-scale volumes for deep object detection and localization
This study aims to analyze the benefits of improved multiscale reasoning for object detection and localization with deep convolutional neural networks. To that end, an efficient and general object detection framework which operates on scale volumes of a deep feature pyramid is proposed. In contrast to the proposed approach, most current state-of-the-art object detectors operate on a single-scal...
متن کاملMulti-scale Cortical Keypoint Representation for Attention and Object Detection
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2021
ISSN: ['1873-5142', '0031-3203']
DOI: https://doi.org/10.1016/j.patcog.2021.107997